Flexible Indexing with Postgres

BRUCE MOMJIAN

COEDB

Postgres offers a wide variety of indexing structures, and many index lookup methods
with specialized capabilities. This talk explores the many Postgres indexing options.
Includes concepts from Teodor Sigaev, Alexander Korotkov, Oleg Bartunov, Jonathan Katz

https://momjian.us/presentations Creative Commons Attribution License
D0

Last updated: February 2025

1/52

NS e

Outline

Traditional indexing

Expression indexes

Partial indexes

Benefits of bitmap index scans
Non-B-tree index types

Data type support for index types

Index usage summary

2/52

1. Traditional Indexing

hitps:/fwww.flickr.com/photos/ogimogi/
3/52

B-Tree

Ideal for looking up unique values and maintaining unique indexes
High concurrency implementation
Index is key/row-pointer, key/row-pointer

Supply ordered data for queries

® ORDER BY clauses (and LIMIT)
® Merge joins
® Nested loop with index scans

4/52

But I Want More!

Index expressions/functions
Row control

Small, light-weight indexes
Index non-linear data
Closest-match searches

Index data with many duplicates

Index multi-valued fields

5/52

2. Expression Indexes

SELECT * FROM customer WHERE Tower(name) = 'andy';
CREATE INDEX i_customer name ON customer (name); x

CREATE INDEX i_customer lower ON customer (lower(name));

6/52

Let’s Test It

CREATE TABLE customer (name) AS
SELECT ‘'cust' || i
FROM generate series(1l, 1000) AS g(i);

CREATE INDEX i_customer_name ON customer (name);

EXPLAIN SELECT * FROM customer WHERE name = 'cust999';
QUERY PLAN
Index Only Scan using i_customer_name on customer (cost=0.28..8.29 rows=1 width=7)
Index Cond: (name = 'cust999'::text)

EXPLAIN SELECT * FROM customer WHERE Tower(name) = 'cust999';
QUERY PLAN

Seq Scan on customer (cost=0.00..20.00 rows=5 width=7)
Filter: (Tower(name) = 'cust999'::text)

7152

Create an Expression Index

CREATE INDEX i_customer lower ON customer (lower(name));

EXPLAIN SELECT * FROM customer WHERE Tlower(name) = 'cust999';
QUERY PLAN
Bitmap Heap Scan on customer (cost=4.31..9.66 rows=5 width=7)
Recheck Cond: (lower(name) = 'cust999'::text)
-> Bitmap Index Scan on i_customer lower (cost=0.00..4.31 rows=5 width=0)
Index Cond: (lower(name) = 'cust999'::text)

8/52

Other Expression Index Options

User-defined functions

Concatenation of columns

Math expressions

Only IMMUTABLE functions can be used

Consider casting when matching WHERE clause expressions to the indexed
expression

9/52

3. Partial Indexes: Index Row Control

Why index every row if you are only going to look up some of them?
Smaller index on disk and in memory

More shallow index

Less INSERT/UPDATE index overhead

Sequential scan still possible

10/52

Partial Index Creation

ALTER TABLE customer ADD COLUMN state CHAR(2);

UPDATE customer SET state = 'AZ'
WHERE name LIKE 'cust9_';

CREATE INDEX i_customer state az ON customer (state) WHERE state = 'AZ';

11/52

Test the Partial Index

EXPLAIN SELECT * FROM customer WHERE state = 'PA';
QUERY PLAN
Seq Scan on customer (cost=0.00..17.50 rows=5 width=19)
Filter: (state = 'PA'::bpchar)

EXPLAIN SELECT * FROM customer WHERE state = 'AZ';
QUERY PLAN

Bitmap Heap Scan on customer (cost=4.17..9.50 rows=5 width=19)
Recheck Cond: (state = 'AZ'::bpchar)

-> Bitmap Index Scan on i_customer state_az (cost=0.00..4.17 rows=5 width=0)

12/52

Partial Index With Different Indexed Column

DROP INDEX i_customer_name;
CREATE INDEX i_customer name az ON customer (name) WHERE state = 'AZ';

EXPLAIN SELECT * FROM customer WHERE name = 'cust975';
QUERY PLAN

Seq Scan on customer (cost=0.00..17.50 rows=1 width=19)
Filter: (name = 'cust975'::text)

13/52

Partial Index With Different Indexed Column

EXPLAIN SELECT * FROM customer
WHERE name = 'cust975' AND state = 'AZ';
QUERY PLAN
Index Scan using i_customer name az on customer (cost=0.14..8.16 rows=1 width=19)
Index Cond: (name = 'cust975'::text)

EXPLAIN SELECT * FROM customer

WHERE state = 'AZ';
QUERY PLAN

Bitmap Heap Scan on customer (cost=4.17..9.50 rows=5 width=19)
Recheck Cond: (state = 'AZ'::bpchar)
-> Bitmap Index Scan on i_customer name az (cost=0.00..4.17 rows=5 width=0)

14/52

4. Benefits of Bitmap Index Scans

Used when:

® an index lookup might generate multiple hits on the same heap (data) page
¢ using multiple indexes for a single query is useful

Creates a bitmap of matching entries in memory

Row or block-level granularity

Bitmap allows heap pages to be visited only once for multiple matches
Bitmap can merge the results from several indexes with AND/OR filtering

Automatically enabled by the optimizer

15/52

Bitmap Index Scan

Index 1 Index 2 Combined Table
coll ='A’ col2 ='NS’ Index

__—W7|'A’ AND 'NS’

S [k ([| O

= | O |~ | O
o | o |~ | O

16/52

5. Non-B-Tree Index Types

https://www.flickr.com/photos/archeon/
17/52

Block-Range Index (BRIN)

Tiny indexes designed for large tables

Minimum/maximum values stored for a range of blocks (default 1MB, 128 8k
pages)

Allows skipping large sections of the table that cannot contain matching values

Ideally for naturally-ordered tables, e.g., insert-only tables are chronologically
ordered

Index is 0.003% the size of the heap
Indexes are inexpensive to update
Index every column at little cost

Slower lookups than B-tree

18/52

Generalized Inverted Index (GIN)

Best for indexing values with many keys or values, e.g.,

® text documents
* JSON
® multi-dimensional data, arrays

Ideal for columns containing many duplicates

Optimized for multi-row matches

Key is stored only once

Index is key/many-row-pointers

Index updates are batched, though always checked for accuracy
Compression of row pointer list

Optimized multi-key filtering

19/52

Generalized Search Tree (GIST)

GIST is a general indexing framework designed to allow indexing of complex data types
with minimal programming. Supported data types include

® geometric types

® range types

hstore (key/value pairs)

® intarray (integer arrays)

® pg trgm (trigrams)
Supports optional “distance” for nearest-neighbors/closest matches. (GIN is also
generalized.)

20/52

e Each child needs to store only the child-unique portion of the original value

Space-Partitioned Generalized Search Tree (SP-GIST)

Similar to GIST in that it is a generalized indexing framework
Allows the key to be split apart (decomposed)
Parts are indexed hierarchically into partitions

Partitions are of different sizes

because each entry in the partition shares the same parent value.

21/52

Hash Indexes

¢ Equality, non-equality lookups; no range lookups
e Crash-safe starting in Postgres 10

® Replicated starting in Postgres 10

22/52

I Am Not Making This Up

SELECT amname, obj description(oid, 'pg_am')
FROM pg am ORDER BY 1;

obj description

|

+

| block range index (BRIN) access method
btree | b-tree index access method

|

|

|

|

gin GIN index access method
gist GiST index access method
hash hash index access method
spgist | SP-GiST index access method

23/52

Index Type Summary

B-tree is ideal for unique values

BRIN is ideal for the indexing of many columns

GIN is ideal for indexes with many duplicates

SP-GIST is ideal for indexes whose keys have many duplicate prefixes
GIST for everything else

24/52

6. Data Type Support for Index Types

https:/fwww.flickr.com/photos/jonobass/
25/52

Finding Supported Data Types - B-Tree

SELECT opfname FROM pg opfamily, pg_am

WHERE opfmethod = pg am.oid AND amname = 'btree'

ORDER BY 1;

abstime_ops Jjsonb_ops
array_ops macaddr_ops
bit ops money_ops
bool_ops name_ops
bpchar_ops network_ops
bpchar_pattern_ops numeric_ops
bytea_ops oid_ops
char_ops oidvector_ops
datetime_ops pg_lsn_ops
enum_ops range_ops
float_ops record_image_ops
integer_ops record_ops
interval _ops reltime_ops

These data types are mostly single-value and easily ordered. B-tree support for multi-valued types like

tsvector is only for complete-field equality comparisons.

text_ops
text_pattern_ops
tid_ops

time_ops
timetz_ops
tinterval ops
tsquery_ops
tsvector_ops
uuid_ops
varbit_ops

26/52

Finding Supported Data Types - BRIN

SELECT opfname FROM pg opfamily, pg_am

WHERE opfmethod = pg_am.oid AND amname = 'brin'

ORDER BY 1;

abstime_minmax_ops
bit minmax_ops
box_inclusion_ops
bpchar_minmax_ops
bytea_minmax_ops
char_minmax_ops
datetime_minmax_ops
float_minmax_ops
integer_minmax_ops

interval_minmax_ops
macaddr_minmax_ops
name_minmax_ops

network_inclusion_ops

network_minmax_ops
numeric_minmax_ops
oid_minmax_ops
pg_lsn_minmax_ops
range_inclusion_ops

reltime_minmax_ops
text_minmax_ops
tid_minmax_ops
time_minmax_ops
timetz_minmax_ops
uuid_minmax_ops
varbit_minmax_ops

27/52

Finding Supported Data Types - GIN

SELECT opfname FROM pg opfamily, pg_am
WHERE opfmethod = pg am.oid AND amname = 'gin'
ORDER BY 1;

opfname

array_ops
jsonb_ops
jsonb_path _ops
tsvector ops
These date types are multi-value, where each value is independent.

28/52

Finding Supported Data Types - GIST

SELECT opfname FROM pg opfamily, pg am
WHERE opfmethod = pg am.oid AND amname = 'gist'
ORDER BY 1;

opfname

box_ops

circle_ops

jsonb_ops

network_ops

point_ops

poly ops

range_ops

tsquery ops

tsvector ops
These data types are multi-value — some have independent values (JSON, tsvector), others have
dependent values (point, box).

29/52

Finding Supported Data Types - SP-GIST

SELECT opfname FROM pg opfamily, pg_am
WHERE opfmethod = pg am.oid AND amname = 'spgist'
ORDER BY 1;

opfname

kd_point_ops
quad_point_ops
range_ops
text_ops
For text, this is useful when the keys are long.

30/52

Index Type Examples

https://www.flickr.com/photos/samcatchesides/

31/52

Internal

Leaf

Heap

32/52

BRIN Example

CREATE TABLE brin_example AS
SELECT generate series(1,100000000) AS id;

CREATE INDEX btree index ON brin_example(id);
CREATE INDEX brin_index ON brin_example USING brin(id);

SELECT relname, pg_size pretty(pg relation size(oid))
FROM pg_class
WHERE relname LIKE 'brin %' OR relname = 'btree_index'
ORDER BY relname;
relname | pg_size pretty

______________ S

brin_example | 3457 MB

btree index | 2142 MB

brin_index | 104 kB

33/52

GIN Example Using tsvector ops

CREATE TABLE articles (doc TSVECTOR);
INSERT INTO articles VALUES ('The fox is sick');
INSERT INTO articles VALUES ('How sick is this');

SELECT ctid, * FROM articles ORDER BY 1;
ctid | doc

'The' 'fox' 'is' 'sick'
"How' 'is' 'sick' 'this'

34/52

GIN Example Using tsvector ops

SELECT ctid, * FROM articles ORDER BY 1;

ctid | doc
_______ A e e ——————
(0,1) | 'The" 'fox' 'is' 'sick'
(0,2) | 'How' 'is' 'sick' 'this'
fox (0,1)

is (0,1), (0,2)
sick (0,1), (0,2)

this (0,2)
How (0,2)
The (0,1)

Integer arrays are indexed similarly.

35/52

GIN Example Using JSON

CREATE TABLE webapp (doc JSONB);

INSERT INTO webapp VALUES
(*{"name": "Bi11", "active": true}');

INSERT INTO webapp VALUES
(*{"name": "Jack", "active": true}');

SELECT ctid, * FROM webapp ORDER BY 1;
ctid | doc

| {"name": "Bi11", "active": true}
(0,2) | {"name": "Jack", "active": true}

36/52

GIN Example Using jsonb_ops (default)

(0,1) | {"name": "Bi11", "active": true}
(0,2) | {"name": "Jack", "active": true}

CREATE INDEX i webapp_yc ON webapp
USING gin (doc /* jsonb ops */);

active (0,1), (0,2)
name (0,1), (0,2)
true (0,1), (0,2)
Bill (0,1)
Jack (0,2)

37/52

GIN Example Using jsonb_path ops

(0,1) | {"name": "Bi11", "active": true}
(0,2) | {"name": "Jack", "active": true}

CREATE INDEX i webapp doc_path ON webapp
USING gin (doc jsonb path ops);

hash(active, true) (0,1), (0,2)
hash(name, Bill) (0,1)
hash(name, Jack) (0,2)

Nested keys have their parent keys (paths) prepended before hashing.

38/52

GIST

e Supports data types with loosely-coupled values, like tsvector, J[SONB
e Uniquely supports data types with tightly-coupled values

® multi-dimensional types (geographic)

® range types

® [P network data type

39/52

Linear Indexing

-5 0 5
-5 0 5

- g
-5

40/52

Multi-Dimensional

A

\/

41/52

Linear Methods Are Inefficient

42/52

R-Tree Indexes Bounding Boxes

y

-5 5

Level 1
Level 2
Level 3

Geographic objects (lines, polygons) also can appear in R-tree indexes. based on their

own bounding boxes.
43/52

GIST Two-Dimensional Ops

box_ops
circle_ops
point_ops
poly ops
PostGIS also uses this indexing method.

44/52

Range Indexing With GIST

GIST range-type indexing uses large ranges at the top level of the index, with ranges
decreasing in size at lower levels, just like how R-tree bounding boxes are indexed.

45/52

SP-GIST TEXT_OPS Example (Suffix Tree)

/\

http:// ftp://
google.com/ yahoo.com/ google.com/public/ berkeley.edu/
index.html index.html README bin.tar.gz
maps.html flickr.html cgi.html doc.pdf

Internally split by character. B-trees use range partitioning, e.g., A—C, rather than
common prefix partitioning, so a B-tree key must store the full key value.

46/52

Other SP-GIST Index Examples

® quad_point_ops uses four corner points in square partitions of decreasing size

® kd point_ops splits on only one dimension

47/52

btree_gin (GIN)
btree_gist (GIST)
cube (GIST)

hstore (GIST, GIN)
intarray (GIST, GIN)
ltree (GIST)
pg_trgm (GIST, GIN)
PostGIS

seg

Extension Index Support

48/52

7. Index Usage Summary

https://www.flickr.com/photos/jubilo/
49/52

When To Create Indexes

pg_stat_user_tables.seq_scan is high

Check frequently-executed queries with EXPLAIN (find via pg_stat_statements or
pgbadger)

Squential scans are not always bad
If pg_stat_user_indexes.idx_scan is low, the index might be unnecessary

Unnecessary indexes use storage space and slow down INSERTs and some UPDATES

50/52

Evaluating Index Types

Index build time

Index storage size
INSERT/UPDATE overhead
Access speed

Operator lookup flexibility

51/52

]
ML

E.

=

Conclusion

= hitps://momjian.us/presentations

bttps://www.flickr.com/photos/philipp_zurmoehle/

52/52

